Solving Logistic Regression with Group Cardinality Constraints for Time Series Analysis
نویسندگان
چکیده
We propose an algorithm to distinguish 3D+t images of healthy from diseased subjects by solving logistic regression based on cardinality constrained, group sparsity. This method reduces the risk of overfitting by providing an elegant solution to identifying anatomical regions most impacted by disease. It also ensures that consistent identification across the time series by grouping each image feature across time and counting the number of non-zero groupings. While popular in medical imaging, group cardinality constrained problems are generally solved by relaxing counting with summing over the groupings. We instead solve the original problem by generalizing a penalty decomposition algorithm, which alternates between minimizing a logistic regression function with a regularizer based on the Frobenius norm and enforcing sparsity. Applied to 86 cine MRIs of healthy cases and subjects with Tetralogy of Fallot (TOF), our method correctly identifies regions impacted by TOF and obtains a statistically significant higher classification accuracy than logistic regression without and relaxed grouped sparsity constraint.
منابع مشابه
Technical Note: Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model
We consider assortment optimization problems when customers choose according to the nested logit model and there is a capacity constraint limiting the total capacity consumption of all products offered in all nests. When each product consumes one unit of capacity, our capacity constraint limits the cardinality of the offered assortment. For the cardinality constrained case, we develop an effici...
متن کاملResidual Power Series Method for Solving Time-fractional Model of Vibration Equation of Large Membranes
The primary aim of this manuscript is to present the approximate analytical solutions of the time fractional order α (1<α≤2) Vibration Equation (VE) of large membranes with the use of an iterative technique namely Residual Power Series Method (RPSM). The fractional derivative is defined in the Caputo sense. Example problems have been solved to demonstrate the efficacy of the present method and ...
متن کاملAnalysis of urban growth pattern using logistic regression modeling, spatial autocorrelation and fractal analysis Case study: Ahvaz city
Transformation of land use-land cover change occurs due to the numbers and activities of people. Urban growth modeling has attracted authentic attention because it helps to comprehend the mechanisms of land use change and thus helps relevant policies made. This study applied logistic regression to model urban growth in the Ahvaz Metropolitan Area of Khuzestan province in IDRISI Selva software a...
متن کاملConstrained Assortment Optimization for the Nested Logit Model
We study assortment optimization problems where customer choices are governed by the nested logit model and there are constraints on the set of products offered in each nest. Under the nested logit model, the products are organized in nests. Each product in each nest has a fixed revenue associated with it. The goal is to find a feasible set of products, i.e. a feasible assortment, to maximize t...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 9351 شماره
صفحات -
تاریخ انتشار 2015